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ABSTRACT

A method is presented for determining heat transfer rates and
thermal stresses from the gamma-ray energy absorption of nuclear
reactor shells for plane, cylindrical, and spherical geometries. Cri-
teria for minimizing thermal stresses are Jeveloped, along with the
corresponding external cooling ré.tes necessary to minimize the thermal
stress. Design charts are presented for rapid determination of ap-
proximate thermal stresses and heat transfer rates, along with a

numerical example illustrating the use of the charts.

]
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1. Introduction

The problem of gamma-ray heating must be considered in the design of many nuclear
reactors. It is especially important in cases where the gamma heating may cause thermal
stresses in the external shell of the reactor if this shell is a structural member and subject
to internal pressures which also result in stresses of large magnitude, Thus, while thermal

stresses are relieved by local yielding or creep under high temperatures, severe yielding may

cause structural failure under repeated cyclic operation. From the standpoint of reactor de-
sign it is desirable to know the magnitudes of these thermal stresses and to minimize them to
an acceptable level.

To arrive at values of thermal stresses resulting from gamma-ray heating requires the
solution of three separate, but related, problems. The first of these problems is the deter-
mination of the magnitude and distribution of the energy associated with the absorption of
gamma-rays. The second related problem is the determination of the heat transfer rates and
temperature distributions based on the physical properties of the material and the manner in
which heat is being removed from the material. The third related problem is the determina-
tion of thermal stresses resulting from the temperature distribution obtained from the heat
transfer solution. |

The purpose of this paper is to integrate these problems for several simple geometries

with emphasis on the heat transfer and thermal stress aspects from the standpoint of design.
2.  Notation

= Inside radius of sphere or cylinder
Area

= Outside radius of sphere or cylinder

T >
il

¢ = Thickness of slab
C = Constant
E = Modulus of elasticity

r
F(r) = Function defined byf I(r)rdr
a

X
F(x) = Function defined byf I(x)dx
o

r
G(r) = Function defined byf S(r)rzdr
a

h = Corvective heat transfer coefficient
I(r) = Total gamma heating per unit volume cylinder

I(x) = Total gamma heating per unit volume in slab

-4 -
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k = Thermal conductivity

A
0

Gamma-ray source strength per unit area for plane geometry

Constant related to gamma-ray source strength for cylinder by Eq. (3)

Ny

~
it

Constant related to gamma-ray source strength for cylinder by Eq. (5)
L = Length

q{r) = Rate of heat flow by conduction in sphere or cylinder

q(x) = Rate of heat flow by conduction in slab
r = Radius .

S(r) = Total gamma heating per unit volume in sphere

t = Temperature
ta = Temperature at inner face of wall
tb = Temperature at outer face of wall
tm = Mean temperature
X = Distance from face of slab
W = Total gamma-ray energy rate at any location
a = Thermal coefficient of expansion
8 = Temperature difference, t - ta
Gm = Temperature difference, 'I‘m - ta
i = Gamma-ray absorption coefficient

o, = Thermal stress, tensile when positive

3. Gamma-Ray Energy Absorption

The problem of gamma-ray energy absorption is complex and depends on the source
energy, geometry, and its angular and spatial distribution, as well as on the geometry and
physical properties of the absorbing medium. For a reactor shell the problem can be broken
down into several parts:

1. The self-shielding characteristics of the fuel and moderator in the reactor core, and
the resulting emergent radiation from prompt and delayed fission gamma-rays and from gamma-
rays resulting from neutron capture in the fuel and moderator.

2., The absorption of this gamma energy in the vessel wall.

3. The neutron leakage from the reactor core, both fast and thermal.

4, The absorption of gamma energy emitted from thermal neutron capture in the vessel
wall.

5. The absorption of gamma energy emitted from inelastic scattering of fast neutrons

in the vessel wall.

APPROVED FOR PUBLI C RELEASE
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6. If the vessel wall is very thick or if the wall material is a good moderator, the
energy absorbed by elastic scattering of fast neutrons must also be considered, along with the
gamma energy emitted by capture of the fast neutrons that have been thermalized.

The total gamma-ray heating is then obtained as the sum of the contributions from the
individual parts as functions of the source strength or intensity, gamma-ray energy spectrum,
and the spatial coordinates involved.

In gener.al it is necessary to consider several gamma-ray energy levels since a single
energy level will not adequately represent the emitted energy. The different energy levels
have different absorption probabilities in a given material, thus complicating the problem fur-
ther. As a result of the large number of variables involved, even the most complicated ana-
lytical solutions must be based on certain simplifying assumptions, and the errors resulting
from these assumptions may be of considerable magnitude when compared to experimental results.

For the purposes of this paper it will be sufficient to assume that a first order approxi-
mation to the solution of the gamma-ray heating problem is that of simple exponential absorp-
tion.

For a plane geometry this is:

I(x) = Klp.e-p‘x (1)
where I(x) is the gamma heating rate per unit volume
K

i is the mean absorption coefficient for the gamma-ray energy levels involved.

is the total effective source strength per unit area

For a cylindrical geometry, Eq. (1) becomeé

-ur
I(r) = K, “er (2)

where I(r) is the gamma-heating rate per unit volume

K2 is a constant related to the source strength per unit area at the surface r = a by

-ua
Source €
Area - X2 a (3)

For a spherical geometry, Eq. (1) becomes"

-Mr
S(r) = K, E5— (4)
3 2
r
where S(r) is the gamma-heating rate per unit volume

K3 is a constant related to the source strength per unit area at the surface r = a by
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S
-pa
Source e
Area - K3 a2 (5)

4, Steady-State Heat I'ransfer

Solutions for one-dimensional, steady-state heat transfer can be made with relative
simplicity for plane, cylindrical, and spherical geometries. These solutions require the knowl-
edge of the magnitude and distribution of the gamma-ray energy absorption. In this section
it will be assumed that the functions describirig the magnitude and distribution of this energy

are known.

Case 1: Heat Transfer in a Slab of Finite Thickness and Infinite Extent.

The steady-state heat conduction equation in one-dimension is

a(x) = -kaS- (6)

For an element of the slab of thickness dx the difference between the heat flow through the
face at x and the heat flow through the face at x + dx is

dg(x)dx dt :

5 = kA Ty dx (7)
where the thermal conductivity is taken as the mean value for the temperature range to be

covered.

The gamma heating generated in the element of the slab of thickness dx is
dw
ax dx = AI{x)dx (8)

where I(x) is the gamma heating from all sources per unit volume and Adx is the volume of
the element.

For steady-state operation the energy balance on the element is

Heat conducted through face at x - Heat conducted through face at x + dx =

Heat generated in width dx.
From Eqs. (7) and (8) this may be written as

2
-kAg——;-= AX(x) (9)
dx

Integrating this expression with respect to x gives
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- - a—

X
a1
& -Tfo K(x)dx + C, (10)

where C1 is a constant to be determined. A second integration gives an expression for the

temperature distribution

X
1 .
t = -'E' ‘/0 F(x)dx+ Clx+ CZ (11)

X
where F(x) =f I(x)dx and C2 is a constant.

o
At the face where x = 0, t = ta, and C, is found to be

= ta ' (12)

Cy

If the slab is cooled on both sides there will be some intermediate location X, where
the heat transfer by conduction is zero and hence the temperature gradient dt/dx is zero.
For this condition from Fq. (10) and the definition of F(x)

C, =

1
1°% F(xo) (13)

If the slab is insulated on one side, that is, at x = ¢, then X, in Eq. (13) becomes c.

Now let a temperature difference be defined by 6 = t - ta. (14)
Combining Eqs. (11) - (14) results in
6 = --l-fo(x)dx-»LF(x }x (15)
k o k o)

This form for the temperature distribution is convenient in the determination of thermal
stresses since temperature differences, rather than temperatufes, are necessary in thermal
stress solutions.

1t will be shown later that for minimum thermal stresses the temperature difference 6
should be zero at the face x = c. (By definition # is zero at the face x = 0.) The value of

X, for this optimum case can be determined from Eq. (15) as the value that satisfies the

‘/(:cF(x)dx

F(Xom) =——c—‘— (16)

relation

where xom is the value of xo for minimum thermal stress.
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The arbitrary choice of a distance X, from which the heat flows in opposite directions
is also desirable in determining the external cooling required to minimize thermal stresses.
The location of X, automatically determines the cooling rates at both faces of the slab. At

the face x = 0 the rate of heat transfer is, from Egs. (6),(10) and (13),

q(o) = AF(x ) (17)

While at the face x = c, the rate of heat transfer is

a(e) = A[F(e) - F(x))] (18)
The surface temperatures at these faces may be determined from Eqs. (17) and (18) and
Newton's law of cooling, which at x = o is

g(o) = haA(ta -t (19)

fa)
and at x = ¢ is

(20)

afc) hcA(tc - tfc)

where ha and hc are the combined heat transfer coefficients and tfa and tfc are the external

medium temperatures at the slab faces.
Combining Egs. (17) and (19) and Egs. (18) and (20),

F(xo)
ty =5+ te (21)
a
F(c) - F(xo)
e R (22)
c
Case 2: Heat Transfer in a Hollow Cylinder of Infinite Extent.
The steady-state heat conduction equation in one-dimension is
dt
q(r) = - 21rkLI‘—d-; (23)

For an element of the cylinder of thickness dr the difference between the heat flow

through the cylinder at r and the heat flow through the cylinder at r + dr is

d2t

dr2

dq(r) ;
_dr dr = 21TkL(r

dt
+—d;) dr (24)

The gamma heating generated in the element of the cylinder of thickness dr is
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dw
dr

dr = 27LI(r)rdr (25)

where I(r) is the total gamma heating per unit volume and 2rLrdr is the volume of the element.

For steady-state operation the heat balance on the element is, from Egs. (24) and (25),

2
dt Aty i(r)r (26)
dr

- Kr—g g

Integration of this expression gives

r C
dt 1 1
ar = -_kr_/; I(r)rdr +— (27)

where C1 is a constant to be determined. A second integration between the limits of a and r

gives directly

r

0 = -llc—f F(rr) dr + Clln{— (28)
a
r
where F(r) =f I(r)rdr.

a
As before, a location r, is chosen where the heat transfer by conduction is zero and the

temperature gradient dt/dr is zero. From Eq. (22) and the definition of F(r)

¢, == K(r,) (29)
When C1 in Eq. (28) is replaced by the above value,
r
6 = --11{—f F(rr) dr +—11TF(ro)ln% (30)
a

The optimum value of r, for minimum thermal stresses will be that which gives 6 equal

zero at the boundary r = b. This optimum value can be found from Eq. (30) as that which

b
fF(rr) dr
F(r )22 (31)

om’ = /n b/a

satisfies the relation

vhere rom is the value of r0 for minimum thermal stress.

- 10 -
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As before, the location of r, automatically determines the cooling rates for both surfaces
of the cylinder. At the surface r = a the rate of heat transfer is, from Egs. (23), (27), and
(29)

q(a) = - 21rLF(ro) . (32)

At the surface r = b, the rate of heat transfer is

q(b) = 2rL [F(b) + F(ro)] (33)

The surface temperatures may be found in the same manner as in the previous section and

are
F( ro)
ty = * Y (34)
a
F(b) - F( ro)
b
Case 3: Heat Transfer in a Hollow Sphere.
The steady-state heat conduction equation in one-dimension is
q(r) = - 4:7rkr2£ (36)

dr

For an element of the sphere of thickness dr the difference between the heat flow through

the cylinder at r and the heat flow through the cylinder at r + dr is

2
dq(r) 2 d7t dt,
I dr = - 4rk(r 5 + 2r dr) (37)

dr

The gamma heating generated in the element of the cylinder of thickness dr is

aw

2
ar dr = 4rS(r)rdr (38)

where S(r) is the total gamma heating per unit volume and 47rr2dr is the volume of the element.
For steady-state operation, the heat balance on the element is, from Egs. (37) and (39),
2 dt

—k(r2 d—tz + 2r —) = S(r)r2 (39)
dr dr

Integration of this expression gives

r C
1 2 1
- —2‘[ S(r)ridr + —5 (40)
a

dt
dr kr r

- 11 -

APPROVED FOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE
N

where C1 is a constant to be determined. A second integration between the limits of a and r

gives the temperature difference

r
1{ G(r) 1 1
9_--Ef 7 dr - €, (-3 (41)
a
T 2
where G(r) =f S(r)r dr
a

As before, a location r, is chosen where the heat transfer is zero and, from Eq. (40),

¢, =g Glry) , (42)

The final solution is then

k k "o’‘a r
a

r
9=-lf&2” dr + L a(r )(&=-4 (43)
r

The optimum value of r, for minimum. thermal stress, determined as before, is that

which satisfies the relation

om

b
Gr, ) =22 fG‘zr) dr (44)
r

a

where rom is the value of ro for minimum thermal stress.

At the surface r = a the rate of heat transfer is, from Eqgs. (36), (40), and (42),

q(a) = - 4rG( r,) (45)

and at the surface r b the rate of heat transfer is

q(b)

4r [G(b) - G(r )] (48)

The corresponding surface temperatures are

F(ro)
ta =T+ tfa (47)
\ ah
a
G(b) - G(ro)
ty = 2 by (48)
b h
b
- 12 -
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5. Thermal Stresses

The thermal stresses of interest in vessel walls can, in general, be determined from

the simple equation

Ea
O'th = 1., (tm - t) (49)

where E is the modulus of elasticity
o is the linear coefficient of thermal expansion
v is Poisson's ratio
t  is the mean temperature of the rhateria.l
t is the temperature at the point in question,
The equation states that the thermal stress at any point is proportional to the difference be-
tween the mean temperature of the material and the temperature at the point. This may be
visualized as follows: The product atm gives the average or mean expansion of the bulk of
the material. The product at gives the expansion that would have taken place in the vicinity
of t if there were no restraint from the surrounding bulk of the material. The quantity
a(tm - t) then gives the amount of restraint at the point t, since the material is continuous
and planes are assumed to remain plane. The factor (1 - v) is introduced to account for the
effect of restraint in one direction transverse to the direction of the calculated stress.
The equation assumes that the material is stressed below the elastic limit throughout.
If the elastic limit is slightly exceeded, or if creep takes place, the thermal stresses are re-
lieved in these regions and reduced to a much lower value than that calculated from Eq. (49).
In cases where temperature cycling takes place, plastic cyclic flow will not be appreciable if
the stress as calculated by Eq. (49) does not exceed twice the yield strength for a ductile
material whose yield strength in compression is equal to the yield strength in tension. A
comprehensive discussion of the limitations imposed by thermal stresses is given in References
1 and 2.
The difference between the maximum and minimum temperature of the material will be
a minimum for a given energy absorption when the material is cooled in such a Way that the
temperatures on both surfaces are equal. Since the mean temperature, tm, lies between the
maximum and minimum temperature in the material, the magnitude of the largest thermal
stress existing in the material for a given energy absorption will also be a minimum when the
temperatures at both surfaces are equal.
For the purposes of this paper, it is convenient to replace the temperatures in Eq. (44)

by the appropriate values of the temperature difference 6. The equation then becomes, with

no loss in generality,

APPROVED FOR PUBLI C RELEASE
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Ea
h=T1-p B9 (50)

The mean temperature tm depends upon the geometry of the material. The three geom-

etries of interest here are the infinite slab, infinite hollow cylinder, and hollow sphere.

Case 1. Slab of Finite Thickness and Infinite Extent.

The mean temperature for this case is simply

c
[
- — (51) °
or, in terms of the temperature difference 9,
c
[ oax
v
g o (52)

m C

Case 2. Infinite Hollow Cylinder.

The mean temperature for circumferential stress in this case is itself a function of the

radius r and as given in Reference 1 is

r2 + a2 ° 1 )
tm =5 5 9. trdr + 2 trdr (53)
r(b - a") a r

Since the maximum thermal stresses occur at the surfaces r = a and r = b, some simplifica-

tion of Eq. (53) can be obtained by evaluating the equation at these limits. When this is done

and written in terms of the temperature difference, the result is

b
2
Bm = z—azf Ordr (54)

While the above equation applies rigorously only at the surfaces r = a and r = b, it may be

used for approximate determination of internal stresses.

Case 3: Hollow Sphere,

The mean temperature in this case is a function of the radius r and is given in Reference

21_3 3
t =t 3 tr dr +— tr dr (55)
m~ 3,3 3.

(b a’)

- 14 -
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As in the case of the cylinder the maximum thermal stresses of interest occur at the surfaces
r=aand r = b. When Eq. (55) is evaluated at these limits and the results are expressed

\ in terms of the temperature difference 6,

b
3 2
9m=ﬁ;[ r dr (56)
b - a

6. Application of Theory

Because of the complex nature of rigorous gamma-heating solutions, the integral functions
| involved in the heat transfer and thermal stress equations must be solved in general by numer-
[ ical or graphical means. However, a simple analytical solution for a plane geometry is pos-

\ sible, based on the assumption of exponential gamma-ray absorption given by Eq. (1). This
equation will be used to illustrate the method of determining the heat transfer rates and ther-
‘ mal stresses, followed by a numerical example.
For a plane geometry with exponential absorption given by Eq. (1), the heating function
F(x) in Eq. (11) becomes

F(x) = K,(1 - e My (57)

The related functions necessary for the temperature distribution function of Eq. (15) are

F(xo) = Kl(l - e-”-xo) - (58)
X e 1
fo F(x_)dx = K,(x + - (59)
Eq. (15) then becomes
K
___1_ _ "'IJ-xo_ -uX
6 = " (1 - pxe e ) (60)

The optimum value of the thickness X, for minimum thermal stress is found from Eq. (16)
to be

X, =—:T.Zn ke (61)
Figure 1 is a graphical presentation of Eq. (61), normalized by dividing both sides by the total
slab thickness c. '

From Egs. (17), (58), and (61), rate of heat transfer at the slab face x = 0 for

RELEASE
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0.50 | |
Xom _ | |, _KC
0.45 (— c pc I—eke
0.40 (—
035 |—
0.30 | | | |
0 | 2 3 4

ABSORPTION PARAMETER, wc

Fig. 1. Thickness ratio for optimum cooling.
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minimum thermal stresses is given as a fraction of the total source strength as

-uc
-—%

o) , .1 e
K A ue ue

(62)
From Egs. (16), (57), and (61), the rate of heat of heat transfer at the slab face x=rc
for minimum thermal stress is given as a fraction of the total source strength as

ale) 1 (g, L1ygne (63)

K1A ue ue

Figure 2 is a graphical presentation of Eqs. (62) and (63) and shows the fraction of

the total gamma energy crossing the boundaries as heat.

The mean temperature function for minimum thermal stress from Egs. (52), (60), and

(61) is K
__1 2 2, -uc
Gm * Tk [1 "y (1 + —“C)e :l (64)

For optimum cooling and minimum thermal stresses the value of 6 at both external sur-
faces (x = o, and x = c) is zero and the thermal stresses at these surfaces, which are tensile,
are given by

Ea :
Imax = T- 5 m (65)

Thus the thermal stresses at the surface are proportional to the function expressed in Eq. (64).

Figure 3 is a plot of this function versus the absorption parameter uc.

Example:

Determine the maximum thermal stresses and optimum cooling in a nuclear reactor
shell that is constructed of steel 5 in. thick and having a yield strength of 50,000 psi. The
reactor rating is 30 megawatts and the inner surface area of the shell is 18 sq ft and the
mean metal temperature is 600°F.

Assume that the self-shielding factor for gamma-rays in the core is 0.8 and the self-
shielding factor for neutrons not causing fission in the core is 0.2. Also assume that the
average energy of all gamma-rays is approximately 3 Mev.

Solution:

The necessary physical properties are determined from References 4 and 5 to be

k = 23 B/hr-ft-F
& = 0.7/inch

E = 28 (10)% psi
a = 7 (10)8/oF
v = 0.3

- 17 -

APPROVED FOR PUBLI C RELEASE




APPROVED FOR PUBLI C RELEASE
]

1.0 1

(O
Z
(/)]
S 08—
(0
Or—
> .0
> o N
fﬁ::
Zmo.e_ l—
W <
< 0
= u
s o
S8 04— —

2
S 3

@ X=c
8
= 0.2 +— —
O
<
(h e
(N

0 | | | |
0] | 2 3 4 5

ABSORPTION PARAMETER-pc

Fig. 2. Optimum cooling rates at external slab faces.
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ABSORPTION PARAMETER —pc

Fig. 3. Mean temperature and surface stress for optimum cooling.
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The source strength is determined approximately as follows:

The useful energy per fission is taken Ifrom Reference 6 to be 189 Mev and the prompt
and delayed gamma-ray energy plus capture gammas is taken to be 12 Mev per fission. Since
the self-shielding factor of the core is assumed to be 0.8, the gamma energy crossing the
interface between the core and shell is

0.2 (12) = 2.4 Mev per f{ission
Of the 1.5 neutrons per fission that do not enter into the fission reaction 0.8 are assumed to
escape from the core. Of these, approximately 0.3 are thermal neutrons captured in iron
emitting 7 Mev gamma energy per capture. Thus the maximum energy to be recovered from
these neutrons is _

0.8 (1.5) (0.3) 7 = 2.5 Mev per fission
The total source strength is then 4.9 Mev per fission which is equivalent to 0.026 of the total
energy. or 0.78 megawatts.

Converting this to British thermal units per hour and dividing by the surface area gives
K, = 1.47 (10)5 B/hr-ft2

The value of the absorption parameter is uc = 0.7(5) = 3.5
From Fig. 2 the optimum cooling rates are

2

q(%) - 1.47(10)%(0.72) = 1.06(10)° B/hr-it

"

2

q%) - 1.47(10)%(0.24) - 0.35(10)° B/hr-it

From Fig. 3 for an absorption parameter of 3.5 and the constants that have been determined,

5 6 -6
1.47(10)" 28(10) 7(10) 7(0.475) ‘
) 2(23) 12(0.7) (1 - 0.3) = 50,600 psi

%h
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